Equidimensional isometric maps
In Gromov’s treatise (Partial diff erential relations, volume 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 1986), a continuous map between Riemannian manifolds is called isometric if it preserves the length of rectifiable curves. In this note we develop a method using the Baire categor...
Gespeichert in:
Veröffentlicht in: | Commentarii mathematici Helvetici 2015-01, Vol.90 (4), p.761-798 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In Gromov’s treatise (Partial diff erential relations, volume 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 1986), a continuous map between Riemannian manifolds is called isometric if it preserves the length of rectifiable curves. In this note we develop a method using the Baire category theorem for constructing such isometries. We show that a typical 1-Lipschitz map is isometric in canonically formulated extension and restriction problems. |
---|---|
ISSN: | 0010-2571 1420-8946 |
DOI: | 10.4171/CMH/370 |