Teichmüller discs with completely degenerate Kontsevich–Zorich spectrum
We reduce a question of Eskin–Kontsevich–Zorich and Forni–Matheus–Zorich, which asks for a classification of all ${SL}_2(\mathbb{R})$-invariant ergodic probability measures with completely degenerate Kontsevich–Zorich spectrum, to a conjecture of Möller's. Let $\mathcal{D}_g (1)$ be the subset...
Gespeichert in:
Veröffentlicht in: | Commentarii mathematici Helvetici 2015-01, Vol.90 (3), p.573-643 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We reduce a question of Eskin–Kontsevich–Zorich and Forni–Matheus–Zorich, which asks for a classification of all ${SL}_2(\mathbb{R})$-invariant ergodic probability measures with completely degenerate Kontsevich–Zorich spectrum, to a conjecture of Möller's. Let $\mathcal{D}_g (1)$ be the subset of the moduli space of Abelian differentials $\mathcal{M}_g$ whose elements have period matrix derivative of rank one. There is an ${SL}_2(\mathbb{R})$-invariant ergodic probability measure $\nu$ with completely degenerate Kontsevich–Zorich spectrum, i.e. $\lambda_1 = 1 > \lambda_2 = \cdots = \lambda_g = 0$, if and only if $\nu$ has support contained in $\mathcal{D}_g (1)$. We approach this problem by studying Teichmüller discs contained in $\mathcal{D}_g (1)$. We show that if $(X,\omega)$ generates a Teichmüller disc in $\mathcal{D}_g (1)$, then $(X,\omega)$ is completely periodic. Furthermore, we show that there are no Teichmüller discs in $\mathcal{D}_g (1)$, for $g = 2$, and the two known examples of Teichmüller discs in $\mathcal{D}_g (1)$, for $g = 3, 4$, are the only two such discs in those genera. Finally, we prove that if there are no genus five Veech surfaces generating Teichmüller discs in $\mathcal{D}_5(1)$, then there are no Teichmüller discs in $\mathcal{D}_g (1)$, for $g = 5,6$. |
---|---|
ISSN: | 0010-2571 1420-8946 |
DOI: | 10.4171/CMH/365 |