On the appearance of Eisenstein series through degeneration

Let Γ be a Fuchsian group of the first kind acting on the hyperbolic upper half plane ℍ, and let M = Γ \ ℍ be the associated finite volume hyperbolic Riemann surface. If γ is parabolic, there is an associated (parabolic) Eisenstein series, which, by now, is a classical part of mathematical literatur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Commentarii mathematici Helvetici 2008-01, Vol.83 (4), p.701-721
Hauptverfasser: Garbin, Daniel, Jorgenson, Jay, Munn, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Γ be a Fuchsian group of the first kind acting on the hyperbolic upper half plane ℍ, and let M = Γ \ ℍ be the associated finite volume hyperbolic Riemann surface. If γ is parabolic, there is an associated (parabolic) Eisenstein series, which, by now, is a classical part of mathematical literature. If γ is hyperbolic, then, following ideas due to Kudla–Millson, there is a corresponding hyperbolic Eisenstein series. In this article, we study the limiting behavior of parabolic and hyperbolic Eisenstein series on a degenerating family of finite volume hyperbolic Riemann surfaces. In particular, we prove the following result. If γ ∈ Γ corresponds to a degenerating hyperbolic element, then a multiple of the associated hyperbolic Eisenstein series converges to parabolic Eisenstein series on the limit surface.
ISSN:0010-2571
1420-8946
DOI:10.4171/CMH/140