A quantitative stability result for the Prékopa–Leindler inequality for arbitrary measurable functions
We prove that if a triplet of functions satisfies almost-equality in the Prékopa–Leindler inequality, then these functions are close to a common log-concave function, up to multiplication and rescaling. Our result holds for general measurable functions in all dimensions, and provides a quantitative...
Gespeichert in:
Veröffentlicht in: | Annales de l'Institut Henri Poincaré. Analyse non linéaire 2024-05, Vol.41 (3), p.565-614 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that if a triplet of functions satisfies almost-equality in the Prékopa–Leindler inequality, then these functions are close to a common log-concave function, up to multiplication and rescaling. Our result holds for general measurable functions in all dimensions, and provides a quantitative stability estimate with computable constants. |
---|---|
ISSN: | 0294-1449 1873-1430 |
DOI: | 10.4171/aihpc/97 |