Green function for linearized Navier–Stokes around a boundary shear layer profile for long wavelengths
This paper is the continuation of a program, initiated in Grenier and Nguyen [SIAM J. Math. Anal. 51 (2019); J. Differential Equations 269 (2020)], to derive pointwise estimates on the Green function of Orr–Sommerfeld equations. In this paper we focus on long wavelength perturbations, more precisely...
Gespeichert in:
Veröffentlicht in: | Annales de l'Institut Henri Poincaré. Analyse non linéaire 2023-11, Vol.40 (6), p.1457-1485 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is the continuation of a program, initiated in Grenier and Nguyen [SIAM J.
Math. Anal. 51 (2019); J. Differential Equations 269 (2020)], to derive pointwise estimates on the
Green function of Orr–Sommerfeld equations. In this paper we focus on long wavelength perturbations, more precisely horizontal wave numbers
\alpha
of order
\nu^{1/4}
, which correspond to the lower boundary of the instability area for monotonic profiles. |
---|---|
ISSN: | 0294-1449 1873-1430 |
DOI: | 10.4171/aihpc/64 |