Green function for linearized Navier–Stokes around a boundary shear layer profile for long wavelengths

This paper is the continuation of a program, initiated in Grenier and Nguyen [SIAM J. Math. Anal. 51 (2019); J. Differential Equations 269 (2020)], to derive pointwise estimates on the Green function of Orr–Sommerfeld equations. In this paper we focus on long wavelength perturbations, more precisely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'Institut Henri Poincaré. Analyse non linéaire 2023-11, Vol.40 (6), p.1457-1485
Hauptverfasser: Grenier, Emmanuel, Nguyen, Toan T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is the continuation of a program, initiated in Grenier and Nguyen [SIAM J. Math. Anal. 51 (2019); J. Differential Equations 269 (2020)], to derive pointwise estimates on the Green function of Orr–Sommerfeld equations. In this paper we focus on long wavelength perturbations, more precisely horizontal wave numbers \alpha of order \nu^{1/4} , which correspond to the lower boundary of the instability area for monotonic profiles.
ISSN:0294-1449
1873-1430
DOI:10.4171/aihpc/64