Time-periodic solutions of completely resonant Klein–Gordon equations on $\mathbb{S}^{3}
We prove existence and multiplicity of Cantor families of small-amplitude time-periodic solutions of completely resonant Klein–Gordon equations on the sphere \mathbb{S}^{3} with quadratic, cubic, and quintic nonlinearity, regarded as toy models in general relativity. The solutions are obtained by a...
Gespeichert in:
Veröffentlicht in: | Annales de l'Institut Henri Poincaré. Analyse non linéaire 2024-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove existence and multiplicity of Cantor families of small-amplitude time-periodic solutions of completely resonant Klein–Gordon equations on the sphere
\mathbb{S}^{3}
with quadratic, cubic, and quintic nonlinearity, regarded as toy models in general relativity. The solutions are obtained by a variational Lyapunov–Schmidt decomposition, which reduces the problem to the search of mountain pass critical points of a restricted Euler–Lagrange action functional. Compactness properties of its gradient are obtained by Strichartz-type estimates for the solutions of the linear Klein–Gordon equation on
\mathbb{S}^{3}
. |
---|---|
ISSN: | 0294-1449 1873-1430 |
DOI: | 10.4171/aihpc/125 |