How cells deploy ubiquitin and autophagy to defend their cytosol from bacterial invasion

Autophagy serves as a cell-autonomous effector mechanism of innate immunity in the cytosol. Autophagy restricts bacterial proliferation by separating bacteria from the nutrient-rich cytosol and delivering them into bactericidal autolysosomes. Autophagy also restricts inflammation by enclosing the me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autophagy 2011-03, Vol.7 (3), p.304-309
1. Verfasser: Randow, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Autophagy serves as a cell-autonomous effector mechanism of innate immunity in the cytosol. Autophagy restricts bacterial proliferation by separating bacteria from the nutrient-rich cytosol and delivering them into bactericidal autolysosomes. Autophagy also restricts inflammation by enclosing the membrane remnants of vacuoles from which bacteria have escaped. In contrast to starvation-induced autophagy, which engulfs cytosol nonspecifically, antibacterial autophagy is receptor-mediated and selective. Several distinct pathways of antibacterial autophagy have been identified recently, which can be triggered by either bacterial PAMPs, host-mediated modifications of bacteria-containing vacuoles, or cytosolic bacteria that have become decorated with ubiquitin. Ubiquitin-coated bacteria are sensed by p62, a promiscuous autophagy receptor required for the uptake of a variety of ubiquitin-marked autophagy substrates, and by NDP52, an autophagy receptor that, by associating with the immuno-regulatory kinase TBK1, may serve a dedicated function in cytosolic immunity.
ISSN:1554-8627
1554-8635
DOI:10.4161/auto.7.3.14539