Development and implementation of an enterprise-wide predictive model for early absorption, distribution, metabolism and excretion properties

Accurate prediction of absorption, distribution, metabolism and excretion (ADME) properties can facilitate the identification of promising drug candidates. The authors present the Janssen generic Target Product Profile (gTPP) model, which predicts 18 early ADME properties, employs a graph convolutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future medicinal chemistry 2021-10, Vol.13 (19), p.1639-1654
Hauptverfasser: Kumar, Kiran, Chupakhin, Vladimir, Vos, Ann, Morrison, Denise, Rassokhin, Dmitrii, Dellwo, Martin J, McCormick, Keith, Paternoster, Eric, Ceulemans, Hugo, DesJarlais, Renee L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate prediction of absorption, distribution, metabolism and excretion (ADME) properties can facilitate the identification of promising drug candidates. The authors present the Janssen generic Target Product Profile (gTPP) model, which predicts 18 early ADME properties, employs a graph convolutional neural network algorithm and was trained on between 1000–10,000 internal data points per predicted parameter. gTPP demonstrated stronger predictive power than pretrained commercial ADME models and automatic model builders. Through a novel logging method, the authors report gTPP usage for more than 200 Janssen drug discovery scientists. The investigators successfully enabled the rapid and systematic implementation of predictive ML tools across a drug discovery pipeline in all therapeutic areas. This experience provides useful guidance for other large-scale AI/ML deployment efforts.
ISSN:1756-8919
1756-8927
DOI:10.4155/fmc-2021-0138