Development and implementation of an enterprise-wide predictive model for early absorption, distribution, metabolism and excretion properties
Accurate prediction of absorption, distribution, metabolism and excretion (ADME) properties can facilitate the identification of promising drug candidates. The authors present the Janssen generic Target Product Profile (gTPP) model, which predicts 18 early ADME properties, employs a graph convolutio...
Gespeichert in:
Veröffentlicht in: | Future medicinal chemistry 2021-10, Vol.13 (19), p.1639-1654 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurate prediction of absorption, distribution, metabolism and excretion (ADME) properties can facilitate the identification of promising drug candidates.
The authors present the Janssen generic Target Product Profile (gTPP) model, which predicts 18 early ADME properties, employs a graph convolutional neural network algorithm and was trained on between 1000–10,000 internal data points per predicted parameter. gTPP demonstrated stronger predictive power than pretrained commercial ADME models and automatic model builders. Through a novel logging method, the authors report gTPP usage for more than 200 Janssen drug discovery scientists.
The investigators successfully enabled the rapid and systematic implementation of predictive ML tools across a drug discovery pipeline in all therapeutic areas. This experience provides useful guidance for other large-scale AI/ML deployment efforts. |
---|---|
ISSN: | 1756-8919 1756-8927 |
DOI: | 10.4155/fmc-2021-0138 |