Signature peptide selection workflow for biomarker quantification using LC–MS-based targeted proteomics
In contrast to quantification of biotherapeutics, endogenous protein biomarker and target quantification using LC–MS based targeted proteomics can require a much more stringent and time-consuming tryptic signature peptide selection for each specific application. While some general criteria exist, th...
Gespeichert in:
Veröffentlicht in: | Bioanalysis 2023-03, Vol.15 (5), p.295-300 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In contrast to quantification of biotherapeutics, endogenous protein biomarker and target quantification using LC–MS based targeted proteomics can require a much more stringent and time-consuming tryptic signature peptide selection for each specific application. While some general criteria exist, there are no tools currently available in the public domain to predict the ionization efficiency for a given signature peptide candidate. Lack of knowledge of the ionization efficiencies forces investigators to choose peptides blindly, thus hindering method development for low abundant protein quantification. Here, the authors propose a tryptic signature peptide selection workflow to achieve a more efficient method development and to improve success rates in signature peptide selection for low abundant endogenous target and protein biomarker quantification. |
---|---|
ISSN: | 1757-6180 1757-6199 |
DOI: | 10.4155/bio-2022-0241 |