Signature peptide selection workflow for biomarker quantification using LC–MS-based targeted proteomics

In contrast to quantification of biotherapeutics, endogenous protein biomarker and target quantification using LC–MS based targeted proteomics can require a much more stringent and time-consuming tryptic signature peptide selection for each specific application. While some general criteria exist, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioanalysis 2023-03, Vol.15 (5), p.295-300
Hauptverfasser: Qiu, Xiazi I, Ruterbories, Kenneth J, Ji, Qin C, Jenkins, Gary J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In contrast to quantification of biotherapeutics, endogenous protein biomarker and target quantification using LC–MS based targeted proteomics can require a much more stringent and time-consuming tryptic signature peptide selection for each specific application. While some general criteria exist, there are no tools currently available in the public domain to predict the ionization efficiency for a given signature peptide candidate. Lack of knowledge of the ionization efficiencies forces investigators to choose peptides blindly, thus hindering method development for low abundant protein quantification. Here, the authors propose a tryptic signature peptide selection workflow to achieve a more efficient method development and to improve success rates in signature peptide selection for low abundant endogenous target and protein biomarker quantification.
ISSN:1757-6180
1757-6199
DOI:10.4155/bio-2022-0241