Bounds on Multiple Self-avoiding Polygons

A self-avoiding polygon is a lattice polygon consisting of a closed self-avoiding walk on a square lattice. Surprisingly little is known rigorously about the enumeration of self-avoiding polygons, although there are numerous conjectures that are believed to be true and strongly supported by numerica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2018-09, Vol.61 (3), p.518-530
Hauptverfasser: Hong, Kyungpyo, Oh, Seungsang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A self-avoiding polygon is a lattice polygon consisting of a closed self-avoiding walk on a square lattice. Surprisingly little is known rigorously about the enumeration of self-avoiding polygons, although there are numerous conjectures that are believed to be true and strongly supported by numerical simulations. As an analogous problemto this study, we considermultiple self-avoiding polygons in a confined region as a model for multiple ring polymers in physics. We find rigorous lower and upper bounds for the number ${{p}_{m\times n}}$ of distinct multiple self-avoiding polygons in the $m\,\times \,n$ rectangular grid on the square lattice. For $m\,=\,2,\,{{p}_{2\times n}}\,=\,{{2}^{n-1}}\,-1$ . And for integers $m,\,n\,\ge \,3$ , $${{2}^{m+n-3}}\left( \frac{17}{10} \right){{\,}^{\left( m-2 \right)\left( n-2 \right)}}\,\le \,{{p}_{m\times n}}\,\le \,{{2}^{m+n-3}}\left( \frac{31}{16} \right){{\,}^{\left( m-2 \right)\left( n-2 \right)}}.$$
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-2017-072-x