Nuij Type Pencils of Hyperbolic Polynomials

Nuij's theorem states that if a polynomial $p\in \mathbb{R}[z]$ is hyperbolic (i.e., has only real roots), then $p+s{{p}^{'}}$ is also hyperbolic for any $s\in \mathbb{R}$ . We study other perturbations of hyperbolic polynomials of the form ${{p}_{a}}(z,s)\,\,:=\,\,\,p\,(z)+\,\sum\nolimits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2017-09, Vol.60 (3), p.561-570
Hauptverfasser: Kurdyka, Krzysztof, Paunescu, Laurentiu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nuij's theorem states that if a polynomial $p\in \mathbb{R}[z]$ is hyperbolic (i.e., has only real roots), then $p+s{{p}^{'}}$ is also hyperbolic for any $s\in \mathbb{R}$ . We study other perturbations of hyperbolic polynomials of the form ${{p}_{a}}(z,s)\,\,:=\,\,\,p\,(z)+\,\sum\nolimits_{k=1}^{d}{{{a}_{k}}{{s}^{k}}{{p}^{(k)}}(z)}$ . We give a full characterization of those $a=({{a}_{1}},...,{{a}_{d}})\,\in \,{{\mathbb{R}}^{d}}$ for which ${{p}_{a}}(z,s)$ is a pencil of hyperbolic polynomials. We also give a full characterization of those $a=({{a}_{1}},...,{{a}_{d}})\,\in \,{{\mathbb{R}}^{d}}$ for which the associated families $ $ admit universal determinantal representations. In fact, we show that all these sequences come fromspecial symmetric Toeplitz matrices.
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-2016-079-1