Nuij Type Pencils of Hyperbolic Polynomials
Nuij's theorem states that if a polynomial $p\in \mathbb{R}[z]$ is hyperbolic (i.e., has only real roots), then $p+s{{p}^{'}}$ is also hyperbolic for any $s\in \mathbb{R}$ . We study other perturbations of hyperbolic polynomials of the form ${{p}_{a}}(z,s)\,\,:=\,\,\,p\,(z)+\,\sum\nolimits...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2017-09, Vol.60 (3), p.561-570 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nuij's theorem states that if a polynomial
$p\in \mathbb{R}[z]$
is hyperbolic (i.e., has only real roots), then
$p+s{{p}^{'}}$
is also hyperbolic for any
$s\in \mathbb{R}$
. We study other perturbations of hyperbolic polynomials of the form
${{p}_{a}}(z,s)\,\,:=\,\,\,p\,(z)+\,\sum\nolimits_{k=1}^{d}{{{a}_{k}}{{s}^{k}}{{p}^{(k)}}(z)}$
. We give a full characterization of those
$a=({{a}_{1}},...,{{a}_{d}})\,\in \,{{\mathbb{R}}^{d}}$
for which
${{p}_{a}}(z,s)$
is a pencil of hyperbolic polynomials. We also give a full characterization of those
$a=({{a}_{1}},...,{{a}_{d}})\,\in \,{{\mathbb{R}}^{d}}$
for which the associated families
$ $
admit universal determinantal representations. In fact, we show that all these sequences come fromspecial symmetric Toeplitz matrices. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2016-079-1 |