On Stanley Depths of Certain Monomial Factor Algebras
Let $S\,=\,K\left[ {{x}_{1}},\,\ldots \,,\,{{x}_{n}} \right]$ be the polynomial ring in $n$ -variables over a field $K$ and $I$ a monomial ideal of $S$ . According to one standard primary decomposition of $I$ , we get a Stanley decomposition of the monomial factor algebra $S/I$ . Using this Stanley...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2015-06, Vol.58 (2), p.393-401 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$S\,=\,K\left[ {{x}_{1}},\,\ldots \,,\,{{x}_{n}} \right]$
be the polynomial ring in
$n$
-variables over a field
$K$
and
$I$
a monomial ideal of
$S$
. According to one standard primary decomposition of
$I$
, we get a Stanley decomposition of the monomial factor algebra
$S/I$
. Using this Stanley decomposition, one can estimate the Stanley depth of
$S/I$
. It is proved that
$\text{sdept}{{\text{h}}_{s}}\left( S/I \right)\,\ge \,\text{siz}{{\text{e}}_{S}}\left( I \right)$
. When
$I$
is squarefree and
$\text{bigsiz}{{\text{e}}_{S}}\left( I \right)\,\le \,2$
, the Stanley conjecture holds for
$S/I$
, i.e.,
$\text{sdept}{{\text{h}}_{S}}\left( S/I \right)\ge \text{dept}{{\text{h}}_{S}}\left( S/I \right)$
. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2015-001-x |