L-functions for Quadratic Characters and Annihilation of Motivic Cohomology Groups
Let $n$ be a positive even integer, and let $F$ be a totally real number field and $L$ be an abelian Galois extension which is totally real or $\text{CM}$ . Fix a finite set $S$ of primes of $F$ containing the infinite primes and all those which ramify in $L$ , and let ${{S}_{L}}$ denote the primes...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2015-09, Vol.58 (3), p.620-631 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$n$
be a positive even integer, and let
$F$
be a totally real number field and
$L$
be an abelian Galois extension which is totally real or
$\text{CM}$
. Fix a finite set
$S$
of primes of
$F$
containing the infinite primes and all those which ramify in
$L$
, and let
${{S}_{L}}$
denote the primes of
$L$
lying above those in
$S$
. Then
$\mathcal{O}_{L}^{S}$
denotes the ring of
${{S}_{L}}$
-integers of
$L$
. Suppose that
$\psi$
is a quadratic character of the Galois group of
$L$
over
$F$
. Under the assumption of the motivic Lichtenbaum conjecture, we obtain a non-trivial annihilator of the motivic cohomology group
$H_{\mathcal{M}}^{2}\left( \mathcal{O}_{L}^{S},\mathbb{Z}\left( n \right) \right)$
from the lead term of the Taylor series for the S-modified Artin
$L$
-function
$L_{L/F}^{S}\left( s,\psi \right)$
at
$s=1-n$
. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2014-072-3 |