Generalized Jordan Semiderivations in Prime Rings
Let $R$ be a ring and let $g$ be an endomorphism of $R$ . The additive mapping $d:\,R\,\to \,R$ is called a Jordan semiderivation of $R$ , associated with $g$ , if $$d\left( {{x}^{2}} \right)=d\left( x \right)x+g\left( x \right)d\left( x \right)=d\left( x \right)g\left( x \right)+xd\left( x \right)\...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2015-06, Vol.58 (2), p.263-270 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$R$
be a ring and let
$g$
be an endomorphism of
$R$
. The additive mapping
$d:\,R\,\to \,R$
is called a Jordan semiderivation of
$R$
, associated with
$g$
, if
$$d\left( {{x}^{2}} \right)=d\left( x \right)x+g\left( x \right)d\left( x \right)=d\left( x \right)g\left( x \right)+xd\left( x \right)\,\text{and}\,d\left( g\left( x \right) \right)=g\left( d\left( x \right) \right)$$
for all
$x\,\in \,R$
. The additive mapping
$F:\,R\,\to \,R$
is called a generalized Jordan semiderivation of
$R$
, related to the Jordan semiderivation
$d$
and endomorphism
$g$
, if
$$F\left( {{x}^{2}} \right)=F\left( x \right)x+g\left( x \right)d\left( x \right)=F\left( x \right)g\left( x \right)+xd\left( x \right)\,\,and\,F\left( g\left( x \right) \right)=g\left( F\left( x \right) \right)$$
for all
$x\,\in \,R$
. In this paper we prove that if
$R$
is a prime ring of characteristic different from 2,
$g$
an endomorphism of
$R,\,d$
a Jordan semiderivation associated with
$g,\,F$
a generalized Jordan semiderivation associated with
$d$
and
$g$
, then
$F$
is a generalized semiderivation of
$R$
and
$d$
is a semiderivation of
$R$
. Moreover, if
$R$
is commutative, then
$F\,=\,d$
. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2014-066-9 |