On the Theorem of the Primitive Element with Applications to the Representation Theory of Associative and Lie Algebras
We describe all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let $...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2014-12, Vol.57 (4), p.735-748 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let
$K/F$
be a finite separable field extension and let
$x,\,y\,\in \,K$
. When is
$F\left[ x,\,y \right]\,=\,F\left[ \alpha x\,+\,\beta y \right]$
for some nonzero elements
$\alpha ,\,\beta \,\in \,F?$ |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2013-046-9 |