Covering the Unit Sphere of Certain Banach Spaces by Sequences of Slices and Balls

We prove that, given any covering of any infinite-dimensional Hilbert space $H$ by countably many closed balls, some point exists in $H$ which belongs to infinitely many balls. We do that by characterizing isomorphically polyhedral separable Banach spaces as those whose unit sphere admits a point-fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2014-03, Vol.57 (1), p.42-50
Hauptverfasser: Fonf, Vladimir P., Zanco, Clemente
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that, given any covering of any infinite-dimensional Hilbert space $H$ by countably many closed balls, some point exists in $H$ which belongs to infinitely many balls. We do that by characterizing isomorphically polyhedral separable Banach spaces as those whose unit sphere admits a point-finite covering by the union of countably many slices of the unit ball.
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-2012-027-7