Ziegler's Indecomposability Criterion

Ziegler’s Indecomposability Criterion is used to prove that a totally transcendental, i.e., $\sum $ -pure injective, indecomposable left module over a left noetherian ring is a directed union of finitely generated indecomposable modules. The same criterion is also used to give a sufficient condition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2013-09, Vol.56 (3), p.564-569
1. Verfasser: Herzog, Ivo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ziegler’s Indecomposability Criterion is used to prove that a totally transcendental, i.e., $\sum $ -pure injective, indecomposable left module over a left noetherian ring is a directed union of finitely generated indecomposable modules. The same criterion is also used to give a sufficient condition for a pure injective indecomposable module $_{R}U$ to have an indecomposable local dual $U_{R}^{\#}.$
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-2011-190-1