Almost Everywhere Convergence of Convolution Measures

Let $\left( X,\,\mathcal{B},\,m,\,\tau \right)$ be a dynamical system with $\left( X,\mathcal{B},m \right)$ a probability space and $\tau $ an invertible, measure preserving transformation. This paper deals with the almost everywhere convergence in ${{\text{L}}^{1}}\left( X \right)$ of a sequence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2012-12, Vol.55 (4), p.830-841
Hauptverfasser: Reinhold, Karin, Savvopoulou, Anna K., Wedrychowicz, Christopher M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\left( X,\,\mathcal{B},\,m,\,\tau \right)$ be a dynamical system with $\left( X,\mathcal{B},m \right)$ a probability space and $\tau $ an invertible, measure preserving transformation. This paper deals with the almost everywhere convergence in ${{\text{L}}^{1}}\left( X \right)$ of a sequence of operators of weighted averages. Almost everywhere convergence follows once we obtain an appropriate maximal estimate and once we provide a dense class where convergence holds almost everywhere. The weights are given by convolution products of members of a sequence of probability measures $\left\{ {{v}_{i}} \right\}$ defined on $\mathbb{Z}$ . We then exhibit cases of such averages where convergence fails.
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-2011-124-3