Almost Everywhere Convergence of Convolution Measures
Let $\left( X,\,\mathcal{B},\,m,\,\tau \right)$ be a dynamical system with $\left( X,\mathcal{B},m \right)$ a probability space and $\tau $ an invertible, measure preserving transformation. This paper deals with the almost everywhere convergence in ${{\text{L}}^{1}}\left( X \right)$ of a sequence of...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2012-12, Vol.55 (4), p.830-841 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$\left( X,\,\mathcal{B},\,m,\,\tau \right)$
be a dynamical system with
$\left( X,\mathcal{B},m \right)$
a probability space and
$\tau $
an invertible, measure preserving transformation. This paper deals with the almost everywhere convergence in
${{\text{L}}^{1}}\left( X \right)$
of a sequence of operators of weighted averages. Almost everywhere convergence follows once we obtain an appropriate maximal estimate and once we provide a dense class where convergence holds almost everywhere. The weights are given by convolution products of members of a sequence of probability measures
$\left\{ {{v}_{i}} \right\}$
defined on
$\mathbb{Z}$
. We then exhibit cases of such averages where convergence fails. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2011-124-3 |