Artinianness of Certain Graded Local Cohomology Modules
We show that if $R\,=\,{{\oplus }_{n\in \mathbb{N}0}}\,{{R}_{n}}$ is a Noetherian homogeneous ring with local base ring $({{R}_{0}},\,{{m}_{0}})$ , irrelevant ideal ${{R}_{+}}$ , and $M$ a finitely generated graded $R$ -module, then $H_{{{m}_{0}}R}^{j}\,(H_{R+}^{t}\,(M))$ is Artinian for $j\,=\,0,\,...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2012-03, Vol.55 (1), p.153-156 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that if
$R\,=\,{{\oplus }_{n\in \mathbb{N}0}}\,{{R}_{n}}$
is a Noetherian homogeneous ring with local base ring
$({{R}_{0}},\,{{m}_{0}})$
, irrelevant ideal
${{R}_{+}}$
, and
$M$
a finitely generated graded
$R$
-module, then
$H_{{{m}_{0}}R}^{j}\,(H_{R+}^{t}\,(M))$
is Artinian for
$j\,=\,0,\,1$
where
$t\,=\,\inf $
{
$i\in {{\mathbb{N}}_{0}}:H_{R+}^{i}(M)$
is not finitely generated}. Also, we prove that if
$\text{cd(}{{R}_{+}},M)\,=\,2$
, then for each
$i\,\in \,{{\mathbb{N}}_{0}},\,H_{{{m}_{0}}R}^{i}\,(H_{R+}^{2}\,(M))$
is Artinian if and only if
$H_{{{m}_{0}}R}^{i+2}(H_{R+}^{1}(M))$
is Artinian, where
$ \text{cd(}{{R}_{+}},\,M)$
is the cohomological dimension of
$M$
with respect to
${{R}_{+}}$
. This improves some results of R. Sazeedeh. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2011-044-1 |