Additive Families of Low Borel Classes and Borel Measurable Selectors

An important conjecture in the theory of Borel sets in non-separable metric spaces is whether any point-countable Borel-additive family in a complete metric space has a $\sigma $ -discrete refinement. We confirm the conjecture for point-countable $\Pi _{3}^{0}$ -additive families, thus generalizing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2011-03, Vol.54 (1), p.180-192
Hauptverfasser: Spurný, J., Zelený, M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An important conjecture in the theory of Borel sets in non-separable metric spaces is whether any point-countable Borel-additive family in a complete metric space has a $\sigma $ -discrete refinement. We confirm the conjecture for point-countable $\Pi _{3}^{0}$ -additive families, thus generalizing results of R. W. Hansell and the first author. We apply this result to the existence of Borel measurable selectors for multivalued mappings of low Borel complexity, thus answering in the affirmative a particular version of a question of J. Kaniewski and R. Pol.
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-2010-088-8