Extensions of Rings Having McCoy Condition

Let $R$ be an associative ring with unity. Then $R$ is said to be a right McCoy ring when the equation $f\left( x \right)g\left( x \right)\,=\,0$ (over $R\left[ x \right]$ ), where $0\,\ne \,f\left( x \right)$ , $g\left( x \right)\,\in \,R\left[ x \right]$ , implies that there exists a nonzero eleme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2009-06, Vol.52 (2), p.267-272
1. Verfasser: Koşan, Muhammet Tamer
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $R$ be an associative ring with unity. Then $R$ is said to be a right McCoy ring when the equation $f\left( x \right)g\left( x \right)\,=\,0$ (over $R\left[ x \right]$ ), where $0\,\ne \,f\left( x \right)$ , $g\left( x \right)\,\in \,R\left[ x \right]$ , implies that there exists a nonzero element $c\,\in \,R$ such that $f\left( x \right)c\,=\,0$ . In this paper, we characterize some basic ring extensions of right McCoy rings and we prove that if $R$ is a right McCoy ring, then $R\left[ x \right]/\left( {{x}^{n}} \right)$ is a right McCoy ring for any positive integer $n\,\ge \,2$ .
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-2009-029-5