Extensions of Rings Having McCoy Condition
Let $R$ be an associative ring with unity. Then $R$ is said to be a right McCoy ring when the equation $f\left( x \right)g\left( x \right)\,=\,0$ (over $R\left[ x \right]$ ), where $0\,\ne \,f\left( x \right)$ , $g\left( x \right)\,\in \,R\left[ x \right]$ , implies that there exists a nonzero eleme...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2009-06, Vol.52 (2), p.267-272 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$R$
be an associative ring with unity. Then
$R$
is said to be a right McCoy ring when the equation
$f\left( x \right)g\left( x \right)\,=\,0$
(over
$R\left[ x \right]$
), where
$0\,\ne \,f\left( x \right)$
,
$g\left( x \right)\,\in \,R\left[ x \right]$
, implies that there exists a nonzero element
$c\,\in \,R$
such that
$f\left( x \right)c\,=\,0$
. In this paper, we characterize some basic ring extensions of right McCoy rings and we prove that if
$R$
is a right McCoy ring, then
$R\left[ x \right]/\left( {{x}^{n}} \right)$
is a right McCoy ring for any positive integer
$n\,\ge \,2$
. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2009-029-5 |