Carmichael Numbers with a Square Totient

Let $\varphi$ denote the Euler function. In this paper, we show that for all large $x$ there are more than ${{x}^{0.33}}$ Carmichael numbers $n\,\le \,x$ with the property that $\varphi \left( n \right)$ is a perfect square. We also obtain similar results for higher powers.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2009-03, Vol.52 (1), p.3-8
1. Verfasser: Banks, W. D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\varphi$ denote the Euler function. In this paper, we show that for all large $x$ there are more than ${{x}^{0.33}}$ Carmichael numbers $n\,\le \,x$ with the property that $\varphi \left( n \right)$ is a perfect square. We also obtain similar results for higher powers.
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-2009-001-7