Every Real Algebraic Integer Is a Difference of Two Mahler Measures

We prove that every real algebraic integer $\alpha$ is expressible by a difference of two Mahler measures of integer polynomials. Moreover, these polynomials can be chosen in such a way that they both have the same degree as that of $\alpha$ , say $d$ , one of these two polynomials is irreducible an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2007-06, Vol.50 (2), p.191-195
Hauptverfasser: Drungilas, Paulius, Dubickas, Artūras
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that every real algebraic integer $\alpha$ is expressible by a difference of two Mahler measures of integer polynomials. Moreover, these polynomials can be chosen in such a way that they both have the same degree as that of $\alpha$ , say $d$ , one of these two polynomials is irreducible and another has an irreducible factor of degree $d$ , so that $\alpha =M\left( P \right)-bM\left( Q \right)$ with irreducible polynomials $P,Q\in \mathbb{Z}\left[ X \right]$ of degree $d$ and a positive integer $b$ . Finally, if $d\le 3$ , then one can take $b=1$ .
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-2007-020-0