On the Principal Eigencurve of the p-Laplacian: Stability Phenomena
We show that each point of the principal eigencurve of the nonlinear problem $$-{{\Delta }_{p}}u-\text{ }\lambda m(x){{\left| u \right|}^{p-2}}u=\mu {{\left| u \right|}^{p-2}}u\,\,\text{in}\Omega ,$$ is stable (continuous) with respect to the exponent $p$ varying in $\left( 1,\infty \right)$ ; we al...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2006-09, Vol.49 (3), p.358-370 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that each point of the principal eigencurve of the nonlinear problem
$$-{{\Delta }_{p}}u-\text{ }\lambda m(x){{\left| u \right|}^{p-2}}u=\mu {{\left| u \right|}^{p-2}}u\,\,\text{in}\Omega ,$$
is stable (continuous) with respect to the exponent
$p$
varying in
$\left( 1,\infty \right)$
; we also prove some convergence results of the principal eigenfunctions corresponding. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2006-036-5 |