On the Principal Eigencurve of the p-Laplacian: Stability Phenomena

We show that each point of the principal eigencurve of the nonlinear problem $$-{{\Delta }_{p}}u-\text{ }\lambda m(x){{\left| u \right|}^{p-2}}u=\mu {{\left| u \right|}^{p-2}}u\,\,\text{in}\Omega ,$$ is stable (continuous) with respect to the exponent $p$ varying in $\left( 1,\infty \right)$ ; we al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2006-09, Vol.49 (3), p.358-370
Hauptverfasser: El Khalil, Abdelouahed, El Manouni, Said, Ouanan, Mohammed
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that each point of the principal eigencurve of the nonlinear problem $$-{{\Delta }_{p}}u-\text{ }\lambda m(x){{\left| u \right|}^{p-2}}u=\mu {{\left| u \right|}^{p-2}}u\,\,\text{in}\Omega ,$$ is stable (continuous) with respect to the exponent $p$ varying in $\left( 1,\infty \right)$ ; we also prove some convergence results of the principal eigenfunctions corresponding.
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-2006-036-5