Group Gradings on Matrix Algebras
Let $\Phi $ be an algebraically closed field of characteristic zero, $G$ a finite, not necessarily abelian, group. Given a $G$ -grading on the full matrix algebra $A\,=\,{{M}_{n}}\left( \Phi \right)$ , we decompose $A$ as the tensor product of graded subalgebras $A\,=\,B\,\otimes \,C,\,B\,\cong \,{{...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2002-12, Vol.45 (4), p.499-508 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$\Phi $
be an algebraically closed field of characteristic zero,
$G$
a finite, not necessarily abelian, group. Given a
$G$
-grading on the full matrix algebra
$A\,=\,{{M}_{n}}\left( \Phi \right)$
, we decompose
$A$
as the tensor product of graded subalgebras
$A\,=\,B\,\otimes \,C,\,B\,\cong \,{{M}_{p}}\left( \Phi \right)$
being a graded division algebra, while the grading of
$C\,\cong \,{{M}_{q}}\left( \Phi \right)$
is determined by that of the vector space
${{\Phi }^{n}}$
. Now the grading of
$A$
is recovered from those of
$A$
and
$B$
using a canonical “induction” procedure. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2002-051-x |