On the Prime Ideals in a Commutative Ring
If $n$ and $m$ are positive integers, necessary and sufficient conditions are given for the existence of a finite commutative ring $R$ with exactly $n$ elements and exactly $m$ prime ideals. Next, assuming the Axiom of Choice, it is proved that if $R$ is a commutative ring and $T$ is a commutative $...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2000-09, Vol.43 (3), p.312-319 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If
$n$
and
$m$
are positive integers, necessary and sufficient conditions are given for the existence of a finite commutative ring
$R$
with exactly
$n$
elements and exactly
$m$
prime ideals. Next, assuming the Axiom of Choice, it is proved that if
$R$
is a commutative ring and
$T$
is a commutative
$R$
-algebra which is generated by a set
$I$
, then each chain of prime ideals of
$T$
lying over the same prime ideal of
$R$
has at most
${{2}^{\left| I \right|}}$
elements. A polynomial ring example shows that the preceding result is best-possible. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2000-038-7 |