On the Prime Ideals in a Commutative Ring

If $n$ and $m$ are positive integers, necessary and sufficient conditions are given for the existence of a finite commutative ring $R$ with exactly $n$ elements and exactly $m$ prime ideals. Next, assuming the Axiom of Choice, it is proved that if $R$ is a commutative ring and $T$ is a commutative $...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2000-09, Vol.43 (3), p.312-319
1. Verfasser: Dobbs, David E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If $n$ and $m$ are positive integers, necessary and sufficient conditions are given for the existence of a finite commutative ring $R$ with exactly $n$ elements and exactly $m$ prime ideals. Next, assuming the Axiom of Choice, it is proved that if $R$ is a commutative ring and $T$ is a commutative $R$ -algebra which is generated by a set $I$ , then each chain of prime ideals of $T$ lying over the same prime ideal of $R$ has at most ${{2}^{\left| I \right|}}$ elements. A polynomial ring example shows that the preceding result is best-possible.
ISSN:0008-4395
1496-4287
DOI:10.4153/CMB-2000-038-7