Characterizing Continua by Disconnection Properties
We study Hausdorff continua in which every set of certain cardinality contains a subset which disconnects the space. We show that such continua are rim-finite. We give characterizations of this class among metric continua. As an application of our methods, we show that continua in which each countab...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 1998-09, Vol.41 (3), p.348-358 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Hausdorff continua in which every set of certain cardinality contains a subset which disconnects the space. We show that such continua are rim-finite. We give characterizations of this class among metric continua. As an application of our methods, we show that continua in which each countably infinite set disconnects are generalized graphs. This extends a result of Nadler for metric continua. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-1998-047-0 |