A Map of a Polyhedron onto a Disk
A map f: X → Y is said to be universal if for every map g:X → Y there exists an x ∈ X such that f(x) = g(x). In [2] W. Holsztynski observed that if B is a Boltyanskiĭ continuum (see [1]), then there exists a universal map f:B→ I 2 such that the product map fxf:BxB→I 2×I 2 is not universal. Using thi...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 1976-12, Vol.19 (4), p.483-485 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A map f: X → Y is said to be universal if for every map g:X → Y there exists an x ∈ X such that f(x) = g(x). In [2] W. Holsztynski observed that if B is a Boltyanskiĭ continuum (see [1]), then there exists a universal map f:B→ I
2 such that the product map fxf:BxB→I
2×I
2 is not universal. Using this he showed that B can be replaced by a two-dimensional polyhedron. He did not, however, give a concrete example. We exhibit explicitly a two-dimensional polyhedron K and a universal map f:K→ I
2 such that f×f:K×K→ I
2×I
2 is not universal. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-1976-072-3 |