On A theorem of Niven
In [3], Niven proved that for any positive integer k, the density of the set of positive integers n for which (n, (φ(n))≤k is zero (where φ is the Euler to tient function). In this paper, we prove a related result—namely if k and j are any positive integers, then the density of the set of positive i...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 1974-03, Vol.17 (1), p.109-110 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In [3], Niven proved that for any positive integer k, the density of the set of positive integers n for which (n, (φ(n))≤k is zero (where φ is the Euler to tient function). In this paper, we prove a related result—namely if k and j are any positive integers, then the density of the set of positive integers n for which (n,σj(n))≤k is zero (where σj(n) is the sum of the jth powers of the positive divisors of n). We will borrow from Niven’s technique, but we must make some crucial modifications. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-1974-019-5 |