Open, Connected Functions
Recall that a function f:X→ Yis called connected if f(C) is connected for each connected subset C of X. These functions have been extensively studied. (See Sanderson [6].) A function f:X → Y is monotone if for each y ∊ Y, f-1(y) is connected. We shall use the techniques of multivalued functions to p...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 1973-03, Vol.16 (1), p.57-60 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recall that a function f:X→ Yis called connected if f(C) is connected for each connected subset C of X. These functions have been extensively studied. (See Sanderson [6].) A function f:X → Y is monotone if for each y ∊ Y, f-1(y) is connected. We shall use the techniques of multivalued functions to prove that if f: X→ Y is open and monotone onto Y, then f-1(C) is connected for each connected subset C of Y. This result is used to prove that the product of semilocally connected spaces is semilocally connected and that the image of a maximally connected space under an open, connected, monotone function is maximally connected. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-1973-012-9 |