The Rudin–Shapiro Sequence and Similar Sequences Are Normal Along Squares

We prove that digital sequences modulo $m$ along squares are normal, which covers some prominent sequences, such as the sum of digits in base $q$ modulo $m$ , the Rudin–Shapiro sequence, and some generalizations. This gives, for any base, a class of explicit normal numbers that can be efficiently ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 2018-10, Vol.70 (5), p.1096-1129
1. Verfasser: Müllner, Clemens
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that digital sequences modulo $m$ along squares are normal, which covers some prominent sequences, such as the sum of digits in base $q$ modulo $m$ , the Rudin–Shapiro sequence, and some generalizations. This gives, for any base, a class of explicit normal numbers that can be efficiently generated.
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-2017-053-1