Quasianalytic Ilyashenko Algebras
We construct a quasianalytic field $\mathcal{F}$ of germs at $+\infty $ of real functions with logarithmic generalized power series as asymptotic expansions, such that $\mathcal{F}$ is closed under differentiation and log-composition; in particular, $\mathcal{F}$ is a Hardy field. Moreover, the fiel...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 2018-02, Vol.70 (1), p.218-240 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct a quasianalytic field
$\mathcal{F}$
of germs at
$+\infty $
of real functions with logarithmic generalized power series as asymptotic expansions, such that
$\mathcal{F}$
is closed under differentiation and log-composition; in particular,
$\mathcal{F}$
is a Hardy field. Moreover, the field
$\mathcal{F}\,\circ \,\left( -\text{log} \right)$
of germs at
${{0}^{+}}$
contains all transition maps of hyperbolic saddles of planar real analytic vector fields. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-2016-048-x |