Heegner Points on Cartan Non-split Curves

Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$ , and let $K$ be an imaginary quadratic field such that the root number of $E/K$ is −1. Let $O$ be an order in $K$ and assume that there exists an odd prime $p$ such that ${{p}^{2}}\,\parallel \,N$ , and $p$ is inert in $O$ . Although there ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 2016-04, Vol.68 (2), p.422-444
Hauptverfasser: Kohen, Daniel, Pacetti, Ariel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$ , and let $K$ be an imaginary quadratic field such that the root number of $E/K$ is −1. Let $O$ be an order in $K$ and assume that there exists an odd prime $p$ such that ${{p}^{2}}\,\parallel \,N$ , and $p$ is inert in $O$ . Although there are no Heegner points on ${{X}_{0}}(N)$ attached to $O$ , in this article we construct such points on Cartan non-split curves. In order to do that, we give a method to compute Fourier expansions for forms on Cartan non-split curves, and prove that the constructed points form a Heegner system as in the classical case.
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-2015-047-6