Lifting Representations of Finite Reductive Groups I: Semisimple Conjugacy Classes

Suppose that $\widetilde{G}$ is a connected reductive group defined over a field $k$ , and $\Gamma$ is a finite group acting via $k$ -automorphisms of $\widetilde{G}$ satisfying a certain quasi-semisimplicity condition. Then the identity component of the group of $\Gamma$ -fixed points in $\widetild...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 2014-12, Vol.66 (6), p.1201-1224
Hauptverfasser: Adler, Jeffrey D., Lansky, Joshua M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that $\widetilde{G}$ is a connected reductive group defined over a field $k$ , and $\Gamma$ is a finite group acting via $k$ -automorphisms of $\widetilde{G}$ satisfying a certain quasi-semisimplicity condition. Then the identity component of the group of $\Gamma$ -fixed points in $\widetilde{G}$ is reductive. We axiomatize the main features of the relationship between this fixed-point group and the pair $\left( \tilde{G},\Gamma \right)$ , and consider any group $G$ satisfying the axioms. If both $\widetilde{G}$ and $G$ are $k$ -quasisplit, then we can consider their duals $\widetilde{{{G}^{*}}}$ and ${{G}^{*}}$ . We show the existence of and give an explicit formula for a natural map from the set of semisimple stable conjugacy classes in ${{G}^{*}}\,(k)$ to the analogous set for $\widetilde{{{G}^{*}}}\,(k)$ . If $k$ is finite, then our groups are automatically quasisplit, and our result specializes to give a map of semisimple conjugacy classes. Since such classes parametrize packets of irreducible representations of $G(k)$ and $\widetilde{G}\,(k)$ , one obtains a mapping of such packets.
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-2014-013-6