On Varieties of Lie Algebras of Maximal Class
We study complex projective varieties that parametrize (finite-dimensional) filiform Lie algebras over $\mathbb{C}$ using equations derived by Millionshchikov. In the infinite-dimensional case we concentrate our attention on $\mathbb{N}$ -graded Lie algebras of maximal class. As shown by $\text{A}$...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 2015-02, Vol.67 (1), p.55-89 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study complex projective varieties that parametrize (finite-dimensional) filiform Lie algebras over
$\mathbb{C}$
using equations derived by Millionshchikov. In the infinite-dimensional case we concentrate our attention on
$\mathbb{N}$
-graded Lie algebras of maximal class. As shown by
$\text{A}$
. Fialowski there are only three isomorphism types of
$\mathbb{N}$
-graded Lie algebras
$L\,=\,\oplus _{i=1}^{\infty }\,{{L}_{i}}$
of maximal class generated by
${{L}_{i}}$
and
${{L}_{2}}$
,
$L\,=\,\left\langle {{L}_{1}},\,{{L}_{2}} \right\rangle$
. Vergne described the structure of these algebras with the property
$L\,=\,\left\langle {{L}_{1}} \right\rangle$
. In this paper we study those generated by the first and
$q$
-th components where
$q\,>\,2$
,
$L\,=\,\left\langle {{L}_{1}},\,{{L}_{q}} \right\rangle$
. Under some technical condition, there can only be one isomorphism type of such algebras. For
$q=\,3$
we fully classify them. This gives a partial answer to a question posed by Millionshchikov. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-2014-008-x |