Analysis of the Brylinski-Kostant Model for Spherical Minimal Representations
We revisit with another view point the construction by R. Brylinski and B. Kostant of minimal representations of simple Lie groups. We start from a pair $\left( V,\,Q \right)$ , where $V$ is a complex vector space and $Q$ a homogeneous polynomial of degree 4 on $V$ . The manifold $\Xi $ is an orbit...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 2012-08, Vol.64 (4), p.721-754 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We revisit with another view point the construction by R. Brylinski and B. Kostant of minimal representations of simple Lie groups. We start from a pair
$\left( V,\,Q \right)$
, where
$V$
is a complex vector space and
$Q$
a homogeneous polynomial of degree 4 on
$V$
. The manifold
$\Xi $
is an orbit of a covering of Conf
$\left( V,\,Q \right)$
, the conformal group of the pair
$\left( V,\,Q \right)$
, in a finite dimensional representation space. By a generalized Kantor-Koecher-Tits construction we obtain a complex simple Lie algebra
$\mathfrak{g}$
, and furthermore a real form
${{\mathfrak{g}}_{\mathbb{R}}}$
. The connected and simply connected Lie group
${{G}_{\mathbb{R}}}$
with
$\text{Lie}\left( {{G}_{\mathbb{R}}} \right)\,=\,{{\mathfrak{g}}_{\mathbb{R}}}$
acts unitarily on a Hilbert space of holomorphic functions defined on the manifold
$\Xi $
. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-2012-011-9 |