Homotopy Classification of Projections in the Corona Algebra of a Non-simple C-algebra

We study projections in the corona algebra of $C\left( X \right)\,\otimes \,K$ , where $K$ is the ${{C}^{*}}$ -algebra of compact operators on a separable infinite dimensional Hilbert space and $X\,=\,[0,\,1],\,[0,\,\infty ),\,(-\infty ,\,\infty ),\,\text{or}\,\text{ }\!\![\!\!\text{ 0,}\,\text{1 }\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 2012-08, Vol.64 (4), p.755-777
Hauptverfasser: Brown, Lawrence G., Lee, Hyun Ho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study projections in the corona algebra of $C\left( X \right)\,\otimes \,K$ , where $K$ is the ${{C}^{*}}$ -algebra of compact operators on a separable infinite dimensional Hilbert space and $X\,=\,[0,\,1],\,[0,\,\infty ),\,(-\infty ,\,\infty ),\,\text{or}\,\text{ }\!\![\!\!\text{ 0,}\,\text{1 }\!\!]\!\!\text{ / }\!\!\{\!\!\text{ 0,}\,\text{1 }\!\!\}\!\!\text{ }$ . Using BDF's essential codimension, we determine conditions for a projection in the corona algebra to be liftable to a projection in the multiplier algebra. We also determine the conditions for two projections to be equal in ${{K}_{0}}$ , Murray-von Neumann equivalent, unitarily equivalent, or homotopic. In light of these characterizations, we construct examples showing that the equivalence notions above are all distinct.
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-2011-092-x