Homotopy Classification of Projections in the Corona Algebra of a Non-simple C-algebra
We study projections in the corona algebra of $C\left( X \right)\,\otimes \,K$ , where $K$ is the ${{C}^{*}}$ -algebra of compact operators on a separable infinite dimensional Hilbert space and $X\,=\,[0,\,1],\,[0,\,\infty ),\,(-\infty ,\,\infty ),\,\text{or}\,\text{ }\!\![\!\!\text{ 0,}\,\text{1 }\...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 2012-08, Vol.64 (4), p.755-777 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study projections in the corona algebra of
$C\left( X \right)\,\otimes \,K$
, where
$K$
is the
${{C}^{*}}$
-algebra of compact operators on a separable infinite dimensional Hilbert space and
$X\,=\,[0,\,1],\,[0,\,\infty ),\,(-\infty ,\,\infty ),\,\text{or}\,\text{ }\!\![\!\!\text{ 0,}\,\text{1 }\!\!]\!\!\text{ / }\!\!\{\!\!\text{ 0,}\,\text{1 }\!\!\}\!\!\text{ }$
. Using BDF's essential codimension, we determine conditions for a projection in the corona algebra to be liftable to a projection in the multiplier algebra. We also determine the conditions for two projections to be equal in
${{K}_{0}}$
, Murray-von Neumann equivalent, unitarily equivalent, or homotopic. In light of these characterizations, we construct examples showing that the equivalence notions above are all distinct. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-2011-092-x |