Endomorphism Algebras of Kronecker Modules Regulated by Quadratic Function Fields
Purely simple Kronecker modules $M$ , built from an algebraically closed field $K$ , arise from a triplet $\left( m,\,h,\,\alpha \right)$ where $m$ is a positive integer, $h:\,K\,\cup \,\{\infty \}\,\to \,\{\infty ,\,0,\,1,\,2,\,3,\,.\,.\,.\,\}$ is a height function, and $\alpha$ is a $K$ -linear fu...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 2007-02, Vol.59 (1), p.186-210 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purely simple Kronecker modules
$M$
, built from an algebraically closed field
$K$
, arise from a triplet
$\left( m,\,h,\,\alpha \right)$
where
$m$
is a positive integer,
$h:\,K\,\cup \,\{\infty \}\,\to \,\{\infty ,\,0,\,1,\,2,\,3,\,.\,.\,.\,\}$
is a height function, and
$\alpha$
is a
$K$
-linear functional on the space
$K\left( X \right)$
of rational functions in one variable
$X$
. Every pair
$\left( h,\,\alpha \right)$
comes with a polynomial
$f$
in
$K\left( X \right)\left[ Y\, \right]$
called the regulator. When the module
$M$
admits non-trivial endomorphisms,
$f$
must be linear or quadratic in
$Y$
. In that case
$M$
is purely simple if and only if
$f$
is an irreducible quadratic. Then the
$K$
-algebra End
$M$
embeds in the quadratic function field
${K\left( X \right)\left[ Y\, \right]}/{(f\,)}\;$
. For some height functions
$h$
of infinite support
$I$
, the search for a functional
$\alpha$
for which
$\left( h,\,\alpha \right)$
has regulator
$0$
comes down to having functions
$\eta \,:\,I\,\to \,K$
such that no planar curve intersects the graph of
$\eta$
on a cofinite subset. If
$K$
has characterictic not
$2$
, and the triplet
$\left( m,\,h,\,\alpha \right)$
gives a purely-simple Kronecker module
$M$
having non-trivial endomorphisms, then
$h$
attains the value
$\infty$
at least once on
$\text{K}\,\cup \,\text{ }\!\!\{\!\!\text{ }\infty \text{ }\!\!\}\!\!\text{ }$
and
$h$
is finite-valued at least twice on
$\text{K}\,\cup \,\text{ }\!\!\{\!\!\text{ }\infty \text{ }\!\!\}\!\!\text{ }$
. Conversely all these
$h$
form part of such triplets. The proof of this result hinges on the fact that a rational function
$r$
is a perfect square in
$K\left( X \right)$
if and only if
$r$
is a perfect square in the completions of
$K\left( X \right)$
with respect to all of its valuations. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-2007-008-7 |