Smoothness of Quotients Associated With a Pair of Commuting Involutions
Let $\sigma $ , $\theta $ be commuting involutions of the connected semisimple algebraic group $G$ where $\sigma$ , $\theta $ and $G$ are defined over an algebraically closed field $\underset{\scriptscriptstyle-}{k},$ char $\underline{k}$ =0. Let $H:={{G}^{\sigma }}$ and $K:={{G}^{\theta }}$ be the...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 2004-10, Vol.56 (5), p.945-962 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$\sigma $
,
$\theta $
be commuting involutions of the connected semisimple algebraic group
$G$
where
$\sigma$
,
$\theta $
and
$G$
are defined over an algebraically closed field
$\underset{\scriptscriptstyle-}{k},$
char
$\underline{k}$
=0. Let
$H:={{G}^{\sigma }}$
and
$K:={{G}^{\theta }}$
be the fixed point groups. We have an action
$\left( H\,\times \,K \right)\,\times \,G\,\to \,G$
, where
$\left( \left( h,\,k \right),\,g \right)\,\mapsto \,hg{{k}^{-1}},\,h\,\in \,H$
,
$k\,\in \,K,g\,\in \,G$
. Let
$G\,//\,\left( H\,\times \,K \right)$
denote the categorical quotient Spec
$\mathcal{O}{{(G)}^{H\times K}}$
. We determine when this quotient is smooth. Our results are a generalization of those of Steinberg [Ste75], Pittie [Pit72] and Richardson [Ric82] in the symmetric case where
$\sigma \,=\,\theta $
and
$H\,=K$
. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-2004-043-7 |