Smoothness of Quotients Associated With a Pair of Commuting Involutions

Let $\sigma $ , $\theta $ be commuting involutions of the connected semisimple algebraic group $G$ where $\sigma$ , $\theta $ and $G$ are defined over an algebraically closed field $\underset{\scriptscriptstyle-}{k},$ char $\underline{k}$ =0. Let $H:={{G}^{\sigma }}$ and $K:={{G}^{\theta }}$ be the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 2004-10, Vol.56 (5), p.945-962
Hauptverfasser: Helminck, Aloysius G., Schwarz, Gerald W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\sigma $ , $\theta $ be commuting involutions of the connected semisimple algebraic group $G$ where $\sigma$ , $\theta $ and $G$ are defined over an algebraically closed field $\underset{\scriptscriptstyle-}{k},$ char $\underline{k}$ =0. Let $H:={{G}^{\sigma }}$ and $K:={{G}^{\theta }}$ be the fixed point groups. We have an action $\left( H\,\times \,K \right)\,\times \,G\,\to \,G$ , where $\left( \left( h,\,k \right),\,g \right)\,\mapsto \,hg{{k}^{-1}},\,h\,\in \,H$ , $k\,\in \,K,g\,\in \,G$ . Let $G\,//\,\left( H\,\times \,K \right)$ denote the categorical quotient Spec $\mathcal{O}{{(G)}^{H\times K}}$ . We determine when this quotient is smooth. Our results are a generalization of those of Steinberg [Ste75], Pittie [Pit72] and Richardson [Ric82] in the symmetric case where $\sigma \,=\,\theta $ and $H\,=K$ .
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-2004-043-7