Units in Group Rings of Free Products of Prime Cyclic Groups

Let $G$ be a free product of cyclic groups of prime order. The structure of the unit group $U(\mathbb{Q}G)$ of the rational group ring $\mathbb{Q}G$ is given in terms of free products and amalgamated free products of groups. As an application, all finite subgroups of $U(\mathbb{Q}G)$ , up to conjuga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 1998-04, Vol.50 (2), p.312-322
Hauptverfasser: Dokuchaev, Michael A., Sobral Singer, Maria Lucia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $G$ be a free product of cyclic groups of prime order. The structure of the unit group $U(\mathbb{Q}G)$ of the rational group ring $\mathbb{Q}G$ is given in terms of free products and amalgamated free products of groups. As an application, all finite subgroups of $U(\mathbb{Q}G)$ , up to conjugacy, are described and the Zassenhaus Conjecture for finite subgroups in $\mathbb{Z}G$ is proved. A strong version of the Tits Alternative for $U(\mathbb{Q}G)$ is obtained as a corollary of the structural result.
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-1998-016-2