Units in Group Rings of Free Products of Prime Cyclic Groups
Let $G$ be a free product of cyclic groups of prime order. The structure of the unit group $U(\mathbb{Q}G)$ of the rational group ring $\mathbb{Q}G$ is given in terms of free products and amalgamated free products of groups. As an application, all finite subgroups of $U(\mathbb{Q}G)$ , up to conjuga...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 1998-04, Vol.50 (2), p.312-322 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$G$
be a free product of cyclic groups of prime order. The structure of the unit group
$U(\mathbb{Q}G)$
of the rational group ring
$\mathbb{Q}G$
is given in terms of free products and amalgamated free products of groups. As an application, all finite subgroups of
$U(\mathbb{Q}G)$
, up to conjugacy, are described and the Zassenhaus Conjecture for finite subgroups in
$\mathbb{Z}G$
is proved. A strong version of the Tits Alternative for
$U(\mathbb{Q}G)$
is obtained as a corollary of the structural result. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-1998-016-2 |