Factorization of Positive Invertible Operators in af Algebras

We examine the problem of factoring a positive invertible operator in an AF C*-algebra as T*T for some invertible operator T with both T and T -1 in a triangular AF subalgebra. A factorization theorem for a certain class of positive invertible operators in AF algebras is proven. However, we explicit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 1995-04, Vol.47 (2), p.421-435
Hauptverfasser: Huang, Houben, Hudson, Timothy D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine the problem of factoring a positive invertible operator in an AF C*-algebra as T*T for some invertible operator T with both T and T -1 in a triangular AF subalgebra. A factorization theorem for a certain class of positive invertible operators in AF algebras is proven. However, we explicitly construct a positive invertible operator in the CAR algebra which cannot be factored with respect to the 2∞ refinement algebra. Our main result generalizes this example, showing that in any AF algebra, there exist positive invertible operators which fail to factor with respect to a given triangular AF subalgebra. We also show that in the context of AF algebras, the notions of having a factorization and having a weak factorization are the same.
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-1995-023-0