Reflexive Bimodules
If VK is a finite dimensional vector space over a field K and L is a lattice of subspaces of V, then, following Halmos [11], alg L is defined to be (the K-algebra of) all K-endomorphisms of V which leave every subspace in L invariant. If R ⊆ end(VK) is any subalgebra we define lat R to be (the subla...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 1989-08, Vol.41 (4), p.592-611 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If VK
is a finite dimensional vector space over a field K and L is a lattice of subspaces of V, then, following Halmos [11], alg L is defined to be (the K-algebra of) all K-endomorphisms of V which leave every subspace in L invariant. If R ⊆ end(VK) is any subalgebra we define lat R to be (the sublattice of) all subspaces of V
K which are invariant under every transformation in R. Then R ⊆ alg [lat R] and R is called a reflexive algebra when this is equality. Every finite dimensional algebra is isomorphic to a reflexive one ([4]) and these reflexive algebras have been studied by Azoff [1], Barker and Conklin [3] and Habibi and Gustafson [9] among others. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-1989-026-x |