Reflexive Bimodules

If VK is a finite dimensional vector space over a field K and L is a lattice of subspaces of V, then, following Halmos [11], alg L is defined to be (the K-algebra of) all K-endomorphisms of V which leave every subspace in L invariant. If R ⊆ end(VK) is any subalgebra we define lat R to be (the subla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 1989-08, Vol.41 (4), p.592-611
Hauptverfasser: Fuller, K. R., Nicholson, W. K., Watters, J. F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If VK is a finite dimensional vector space over a field K and L is a lattice of subspaces of V, then, following Halmos [11], alg L is defined to be (the K-algebra of) all K-endomorphisms of V which leave every subspace in L invariant. If R ⊆ end(VK) is any subalgebra we define lat R to be (the sublattice of) all subspaces of V K which are invariant under every transformation in R. Then R ⊆ alg [lat R] and R is called a reflexive algebra when this is equality. Every finite dimensional algebra is isomorphic to a reflexive one ([4]) and these reflexive algebras have been studied by Azoff [1], Barker and Conklin [3] and Habibi and Gustafson [9] among others.
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-1989-026-x