On Sieved Orthogonal Polynomials II: Random Walk Polynomials
A birth and death process is a stationary Markov process whose states are the nonnegative integers and the transition probabilities (1.1) satisfy (1.2) as t → 0. Here we assume βn > 0, δ n + 1 > 0, n = 0, 1, …, but δ 0 ≦ 0. Karlin and McGregor [10], [11], [12], showed that each birth and death...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 1986-04, Vol.38 (2), p.397-415 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A birth and death process is a stationary Markov process whose states are the nonnegative integers and the transition probabilities
(1.1)
satisfy
(1.2)
as t → 0. Here we assume βn
> 0, δ
n + 1 > 0, n = 0, 1, …, but δ
0 ≦ 0. Karlin and McGregor [10], [11], [12], showed that each birth and death process gives rise to two sets of orthogonal polynomials. The first is the set of birth and death process polynomials {Qn(x)} generated by |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-1986-020-x |