On Sieved Orthogonal Polynomials II: Random Walk Polynomials

A birth and death process is a stationary Markov process whose states are the nonnegative integers and the transition probabilities (1.1) satisfy (1.2) as t → 0. Here we assume βn > 0, δ n + 1 > 0, n = 0, 1, …, but δ 0 ≦ 0. Karlin and McGregor [10], [11], [12], showed that each birth and death...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 1986-04, Vol.38 (2), p.397-415
Hauptverfasser: Charris, Jairo, Ismail, Mourad E. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A birth and death process is a stationary Markov process whose states are the nonnegative integers and the transition probabilities (1.1) satisfy (1.2) as t → 0. Here we assume βn > 0, δ n + 1 > 0, n = 0, 1, …, but δ 0 ≦ 0. Karlin and McGregor [10], [11], [12], showed that each birth and death process gives rise to two sets of orthogonal polynomials. The first is the set of birth and death process polynomials {Qn(x)} generated by
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-1986-020-x