Localization, Algebraic Loops and H-Spaces II
In a previous work [6] it was shown that by imposing certain finiteness conditions on a nilpotent loop certain algebraic results yielded properties about [X, Y] where X is finite CW and Y is an H-Space. In this sequel we further restrict the category of nilpotent loops to a full subcategory called H...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 1979-08, Vol.31 (4), p.812-817 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a previous work [6] it was shown that by imposing certain finiteness conditions on a nilpotent loop certain algebraic results yielded properties about [X, Y] where X is finite CW and Y is an H-Space. In this sequel we further restrict the category of nilpotent loops to a full subcategory called H-loops which still contains all loops of the form [X, Y], We prove that on this category there is a unique and universal P-localization if P ≠ ∅ which corresponds to topological localization. We also show that if the H-loop is a group then the two concepts of localization agree. The first section of this paper is devoted to the definition and basic properties of H-loops. In the second section we develop the localization construction and prove uniqueness. Finally, in the third section we consider the topological and group theoretic situations. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-1979-075-x |