A Theory of Uniformities for Generalized Ordered Spaces
Let (X, ) be a topological space equipped with a partial order ≦ and let C (≦) denote the continuous increasing functions mapping X into R (a function f : X → R is increasing provided f(x) ≦ f(y) whenever x ≦ y) Then (X,, ≦) is an N-space (in the terminology of [16], a completely regular order space...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 1979-02, Vol.31 (1), p.35-44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (X, ) be a topological space equipped with a partial order ≦ and let C (≦) denote the continuous increasing functions mapping X into R (a function f : X → R is increasing provided f(x) ≦ f(y) whenever x ≦ y) Then (X,, ≦) is an N-space (in the terminology of [16], a completely regular order space) provided is the weak topology of C (≦) and if x ≦ y is false, then there is an f ∈ C (≦) such that f(y) < f(x). L. Nachbin's introduction of N-spaces was perspicacious, for these spaces now find application in a wide spectrum of mathematics. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-1979-004-4 |