A Theory of Uniformities for Generalized Ordered Spaces

Let (X, ) be a topological space equipped with a partial order ≦ and let C (≦) denote the continuous increasing functions mapping X into R (a function f : X → R is increasing provided f(x) ≦ f(y) whenever x ≦ y) Then (X,, ≦) is an N-space (in the terminology of [16], a completely regular order space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 1979-02, Vol.31 (1), p.35-44
Hauptverfasser: Lindgren, W. F., Fletcher, P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let (X, ) be a topological space equipped with a partial order ≦ and let C (≦) denote the continuous increasing functions mapping X into R (a function f : X → R is increasing provided f(x) ≦ f(y) whenever x ≦ y) Then (X,, ≦) is an N-space (in the terminology of [16], a completely regular order space) provided is the weak topology of C (≦) and if x ≦ y is false, then there is an f ∈ C (≦) such that f(y) < f(x). L. Nachbin's introduction of N-spaces was perspicacious, for these spaces now find application in a wide spectrum of mathematics.
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-1979-004-4