Witts Theorem for Quadratic Forms Over Non-Dyadic Discrete Valuation Rings
Let R be a discrete valuation ring, with maximal ideal pR, such that ½ ϵ R. Let L be a finitely generated R-module and B : L × L → R a non-degenerate symmetric bilinear form. The module L is called a quadratic module. For notational convenience we shall write xy = B(x, y). Let O(L) be the group of i...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 1977-10, Vol.29 (5), p.928-936 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R be a discrete valuation ring, with maximal ideal pR, such that ½ ϵ R. Let L be a finitely generated R-module and B : L × L → R a non-degenerate symmetric bilinear form. The module L is called a quadratic module. For notational convenience we shall write xy = B(x, y). Let O(L) be the group of isometries, i.e. all R-linear isomorphisms φ : L → L such that B((φ(x), (φ(y)) = B(x, y). |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-1977-093-7 |