Witts Theorem for Quadratic Forms Over Non-Dyadic Discrete Valuation Rings

Let R be a discrete valuation ring, with maximal ideal pR, such that ½ ϵ R. Let L be a finitely generated R-module and B : L × L → R a non-degenerate symmetric bilinear form. The module L is called a quadratic module. For notational convenience we shall write xy = B(x, y). Let O(L) be the group of i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 1977-10, Vol.29 (5), p.928-936
1. Verfasser: Mordecai Cohen, David
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a discrete valuation ring, with maximal ideal pR, such that ½ ϵ R. Let L be a finitely generated R-module and B : L × L → R a non-degenerate symmetric bilinear form. The module L is called a quadratic module. For notational convenience we shall write xy = B(x, y). Let O(L) be the group of isometries, i.e. all R-linear isomorphisms φ : L → L such that B((φ(x), (φ(y)) = B(x, y).
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-1977-093-7