Applications of Duality in the Theory of Finitely Generated Lattice-Ordered Abelian Groups
In a previous paper by the author [3], duality theorems for finitely generated vector lattices and lattice-ordered Abelian groups are described. In particular, the category of finitely generated semi-simple vector lattices is shown to be equivalent to a geometrical category V whose objects are topol...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 1977-04, Vol.29 (2), p.243-254 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a previous paper by the author [3], duality theorems for finitely generated vector lattices and lattice-ordered Abelian groups are described. In particular, the category of finitely generated semi-simple vector lattices is shown to be equivalent to a geometrical category V whose objects are topologically closed cones in Euclidean space, and whose morphisms, called ll-maps\ form a special subclass of the class of piece wise homogeneous linear maps between such cones. Under this categorical duality, finitely generated projective vector lattices and closed polyhedral cones correspond; indeed, the category of finitely generated projective vector lattices is equivalent to the dual of a category whose objects are Euclidean closed polyhedral cones and whose morphisms consist of all piecewise homogeneous linear maps between such cones. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-1977-026-4 |