On Maximal Regular Ideals and Identities in the Tensor Product of Commutative Banach Algebras
Let A1 and A2 be commutative Banach algebras and A1 ⊙ A2 their algebraic tensor product over the complex numbers C.There is always a t least one norm, namely the greatest cross-norm γ (2), on A1 ⊙ A2 that renders it a normed algebra. We shall write A 1 ⊗α A2 for the α-completion of A1 ⊙ A2 when αis...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 1969, Vol.21, p.639-647 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A1
and A2
be commutative Banach algebras and A1
⊙ A2
their algebraic tensor product over the complex numbers C.There is always a t least one norm, namely the greatest cross-norm γ (2), on A1
⊙ A2
that renders it a normed algebra. We shall write A
1 ⊗α
A2
for the α-completion of A1
⊙ A2
when αis an algebra norm on A1
⊙ A2.Gelbaum (2; 3), Tomiyama (9), and Gil de Lamadrid (4) have shown that for certain algebra norms α on A1
⊙ A2
every complex homomorphism on A1
⊙ A2
is α-continuous. In § 3 of this paper, we present a condition on an algebra norm α which is equivalent to the α-continuity of every complex homomorphism on A1
⊙ A2. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-1969-072-3 |