Isomorphisms of Multiplier Algebras

Suppose that G1 and G2 are two locally compact Hausdorff groups with identity elements e and e’ and with respective left Haar measures dx and dy. Let 1 ≦ p ≦ ∞, and Lp(Gi) be the usual Lebesgue space over Gi formed relative to left Haar measure on Gi . We denote by M(Gi) the space of Radon measures,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 1968, Vol.20, p.1165-1172
1. Verfasser: Gaudry, G. I.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that G1 and G2 are two locally compact Hausdorff groups with identity elements e and e’ and with respective left Haar measures dx and dy. Let 1 ≦ p ≦ ∞, and Lp(Gi) be the usual Lebesgue space over Gi formed relative to left Haar measure on Gi . We denote by M(Gi) the space of Radon measures, and by Mbd(Gi) the space of bounded Radon measures on Gi . If a ϵ Gi we write ϵa for the Dirac measure at the point a. Cc(Gi) will denote the space of continuous, complex-valued functions on Gi with compact supports, whilst Cc + (Gi) will denote that subset of Cc(Gi) consisting of those functions which are real-valued and non-negative.
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-1968-110-2