Ovals In a Finite Projective Plane
1. Let be a finite projective plane (8, §17), i.e. a projective space of dimension 2 over a Galois field γ. We suppose that γ has characteristic p ≠ 2, hence order q = pn , where p is an odd prime and h is a positive integer. It is well known that every straight line and every non-singular conic of...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 1955, Vol.7, p.414-416 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1. Let be a finite projective plane (8, §17), i.e. a projective space of dimension 2 over a Galois field γ. We suppose that γ has characteristic p ≠ 2, hence order q = pn
, where p is an odd prime and h is a positive integer. It is well known that every straight line and every non-singular conic of then contains q + 1 points exactly. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/CJM-1955-045-x |