Ovals In a Finite Projective Plane

1. Let be a finite projective plane (8, §17), i.e. a projective space of dimension 2 over a Galois field γ. We suppose that γ has characteristic p ≠ 2, hence order q = pn , where p is an odd prime and h is a positive integer. It is well known that every straight line and every non-singular conic of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 1955, Vol.7, p.414-416
1. Verfasser: Segre, Beniamino
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1. Let be a finite projective plane (8, §17), i.e. a projective space of dimension 2 over a Galois field γ. We suppose that γ has characteristic p ≠ 2, hence order q = pn , where p is an odd prime and h is a positive integer. It is well known that every straight line and every non-singular conic of then contains q + 1 points exactly.
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-1955-045-x